
NASA-CR-192974

SDAG TECHNICAL NOTES - 86-01 November 1986

Architecture of Autonomous Systems I

Piyush Dikshit

Katia Guimaraes

Maya Ramamurthy

Ashok Agrawala

Ronald L. Larsen

Systems Design and Analysis Group

Department of Computer Science

University of Maryland

College Park, MD 20742

q

/

(NASA-CR- 1'72974)

AU TONO_'4OO S SYSTEt4£

(tu :ryl,_na Univ.)

ARCHITFCTURE OF

Final R-oor t

56 p

)

N93-2e047

Unclas

1This research was supported in part by NASA under Grant NCC-2414

|

Contents

1 Introduction

2 Conceptual Framework

3 Operator Interface

4 Task Planning and Reasoning

5 Sensing and Perception

6 Control Execution

7 Control Loops

8 Knowledge Base

9 General Manager

1

1

3

3

5

6

6

9

10

1 Introduction

Automation of Space Station functions and activities, particularly those

involving robotic capabilities with interactive or supervisory human control,

is a complex, multi-disciplinary systems design problem. A wide variety of

applications using autonomous control can be found in the literature, but

none of them seem to address the problem in general. All of them are

designed with a specific application in mind.

In this report, an abstract model is described which unifies the key con-

cepts underlying the design of automated systems such as those studied by

the aerospace contractors. The model has been kept as general as possible.

The attempt is to capture all the key components of autonomous systems.

With a little effort, it should be possible to map the functions of any specific

autonomous system application to the model presented here.

2 Conceptual Framework

A major portion of human endeavor involves observing the state of the

world and altering that state to achieve some desired outcome. Automated

systems are viewed in this context as providing a transfer function between

the human and the world in order to extend human capabilities. Teleop-

erated systems, for example, extend human reach to remote places which

are difficult or hazardous for the human to function in, and may amplify

human strength and sensory abilities.

The conceptual view taken here, therefore, is that an automated system

resides between a human (the operator) and the domain of concern (the

external world). The system provides tl_e operator with an ability to ob-
serve the state of the world remotely and!_to describe changes which are to

be made to that state. The more the degree of automation in the system,

the less the need for operator intervention.

The conceptual framework consists of four major functions integrated

into a unifying system architecture: 1. the operator interface, 2. task plan-

ning and reasoning, 3. sensing and perception, and 4. control execution.

These functions are then organized to provide three control loops: an opera-

tor control loop, an executive control loop, and a local control loop (Fig. 1).

1

Operator Interface (Sensing & Perception

J

I

I

I

I

I

I
T

I

t

I
t__

I

I
r

't 1I Displays

t

= Controls I

t=_

Simulator I Monitor

1
1

t

Planner

Knowledge Basel

I

-..3

11
1

Diagnoser_---

Executor

r i

R.T.Sim.

S.S.Est.
!

[:
Perceptor _.,__._

I

1'
Effector

System Architecture & Integration)

'Task Planning & Reasoning) (Control Execution

Figure 1. Automated System Control Architecture

2

3 Operator Interface

The operator interface includes displays and controls. Displays provide all

of the information about system operation to the human operator, and can

employ a variety of mechanisms for communicating information through

the senses. Visual displays, such as graphics video display workstations,

head-up displays, the body, as through hand controllers or exoskeletons,

can also be used, as can aural feedback and voice generation.

Controls provide the means by which the operator communicates in-

formation to the system, such as the nature or details of the task to be

performed. Alphanumeric keyboards commonly provide this capability, of-

ten augmented with function keys, light pens, and similar mechanisms.

Voice input, hand controllers, exoskeletons, and pedals provide additional

options for the operator.

The integration of displays with controls provides the environment for

human interaction with the system. It provides the means by which the hu-

man operator can communicate the description of the task to be performed

to the system, and the means by which the system can communicate the

status of task execution back to the operator.

4 Task Planning and Reasoning

Task planning and reasoning includes most of the intelligence of the auto-

mated system. It receives the description of the task to be performed from

the Controls, translates that into commands which can be remotely exe-

cuted to change the state of the world, observes the changing world state,

handles unexpected discrepancies in the world, seeking operator interven-

tion only when it cannot cope with a worla situation with the "intelligence"

it has. Task planning and reasoning requires an extensive Knowledge Base

containing all of the data required to represent and reason about the task

domain. It includes a dynamic (time-dependent) world model which ex-

presses the natural laws governing behavior of the system, a CAD/CAM-

style data base which provides the data required to understand the sensed

world and manipulate it, system configuration data which describes the

current suite of operational equipment, and the set of heuristic rules which

3

axe required to reason successfullyand effectivelyin the task domain. The

major capabilitiesof task planning and reasoning are provided by fivefunc-

tionalmodules: 1. the Planner, 2. the Executor, 3. the Simulator, 4. the

Monitor, and 5. the Diagnoser.

The Planner receives the task description from the Controls, and the

current state of the world from the Knowledge Base, including allknown

information relevant to the solution of the problem at hand. The Planner

transforms the (typically)high leveldescription of the task into a nominal

plan of action to accomplish the stated objective. This requires sufficient

knowledge of the problem domain, the state of the system and the envi-

ronment, and solution rules which lead to successful development of an

acceptable plan. The plan is a time sequenced seriesof primitive actions

which are used by the Executor for real-time operation.

The Simulator is a tool for the operator to carry out preliminary in-

vestigations of the effectof certain commands before they can be used in

the real world. It gets simulation requests from the operator, a description

of the real world from the Knowledge Base (or from the operator himself

ifthe command is to be given to a simulated world state) and computes

the time seriesof world state changes corresponding to the request. The

simulation resultsare sent to Displays.

The Executor accepts the nominal plan of action from the Planner and

issues primitive commands in real-time as dictated by the nominal plan.

It also receives minor vernier adjustments which are superimposed on the

command sequence to fine tune the execution of the operation in response

to unanticipated discrepancies between the expected state of the world and

the actual state. These adjustments are made to compensate for errors

which do not threaten successful completj'on of the nominal plan.

The Real Time Simulator complites E_pectations about the Real World

in real time based on the commands issued by the Executor, the current

world state in the Knowledge Base and a command scriptwhich describes

the effectof commands on the Real World. These Expectations are used

by the Monitor to detect discrepancies between what isobserved and what

isexpected in the Real World.

The State Space Estimator uses the observation data provided by the

Perceptor to derive a state description of the Real World, giving meaning

4

to the raw information gathered by the Perceptor. The interpreted world

state description is placed in the Knowledge Base.

The Monitor uses expected values of state descriptors (computed by

the Real Time Simulator) and the observed data in real-time (placed in

the Knowledge Base by the State Space Estimator) to detect discrepancies

between the expected world state and the actual world state. Non-goal-

threatening discrepancies are transformed into vernier adjustments which

are fed back to the Executor. Goal-threatening discrepancies (such as fail-

ure of a required device, or detection of a broken component) require further

analysis. An anomaly report is formatted and sent to the Diagnoser.

The Diagnoser receives anomaly reports from the Monitor. From the

anomaly report and the current world state, it attempts to assess the nature

of the anomaly, its cause, and potential effects. It computes an "inferred

world state," i.e., the most plausible explanation and implied new system

state, and places this in the knowledge base as the best estimate of the

current world state. It then issues a replan order to the Planner, which

informs the Planner that the nominal plan is no longer satisfactory. The

Planner will formulate a new nominal plan or alert the operator if it cannot
do so.

J

5 Sensing and Perception

The sensing and perception function provides a mapping from measurable

internal and external parameters to an estimate of the world state. The

function typically acquires its input from a multi-mode array of task and

world sensing devices, such as cameras, force/torque sensors, proximity

detectors, heat sensors, accelerome_ers, strain gauges, and voltage/current

sensors. The objective of the sensing and:perception function is to provide

the Monitor with a real-time best estimate of the state of the task domain

in terms which are consistent with the expected values provided by the

Real Time Simulator.

5

6 Control Execution

The control execution function includes the manipulators and effectors,

and tools available at the task site which can be used to a_complish the

desired task, as well as the low level controls required to transform primitive

commands issued by the Executor into state-changing actions.

7 Control Loops

The automated system control architecture illustrated consists of three ma-

jor control loops. The Operator Control loop includes the human operator

plus the Controls, Planner, Simulator, and Displays. This loop provides the

interaction between the human operator and the system. It can operate

independently, providing a pure system simulation capability. This might

be effective for operator training or system evaluation, for example.

The Executive Control loop includes all of the components required

to operate and control a subsystem with minimal assistance from a human

operator: the Planner, Executor, Real Time Simulator, Monitor, Diagnoser,

and Knowledge Base. This core loop provides a generic control architecture

which is equally applicable to cont;rolling a deep space spacecraft or an

autonomous vehicle as it is to a robotic system.

The Local Control loop, consisting of the Executor, Real Time Simula-

tor, Effector, Perceptor, State Space Estimator and Monitor, provides the

low level control for the specific manipulators used in the robot, as well as

the sensorbased information extraction algorithms.

These three control loops can be visualized as a train of three gears, as

illustrated in Figure 2. If one visua_:!y po_rays the significance of the three

loops for different operating modes by _heir relative size, one can begin

to understand the robustness of the architecture. Figure 3a illustrates the

typical factory robot, in which nearly all of the emphasis has been placed

on the manipulator loop. This results in relatively dumb robots (e.g., pick

and place, welding, or painting} which have simple computer controllers and

minimal operator interaction except during the task programming phase.

Figure 3b illustrates a teleoperator control concept, in which the executive

control loop has been reduced to its most simple form, performing data

6

transfer functions, but little more. The principle emphasis is on the op-

erator loop to provide a good operator interface and on the local control

loop to provide good manipulative capabilities. In Figure 3c in contrast,

an architecture for an intelligent robot is portrayed. Here, a massive ex-

ecutive control loop replaces the strong operator loop of the teleoperator.

Finally, figure 3d illustrates a supervisory controlled telerobot, which fea-

tures a balance among the three control loops, providing the operator with

the richness of a teleoperated system when the situation demands it, and

providing the capability of a "semi-intelligent" autonomous robot when the

situation allows it.

As the loops pictorially change in relative size, sophistication of the

component subsystems changes drastically. In an attempt to maintain a

consistent architecture, all subsystems are retained for all operating modes.

In some cases, though, they are non-functional (essentially non-existent

except to provide a data interface between the other subsystems), while in

other cases, they might be million-line programs.

It is important to realize that these three control loops do not work

in the same time-frame. The Local Control Loop works in real time as it

needs to keep up with the changes in the real world. The Operator Control

Loop, on the other hand, is used only for high level planning and simula-

tion/testing activities. In a truly autonomous syatem, it will have little to

do with the normal run-time functioning of the rest of the system. The

Executive Control Loop falls somewhere in between. It is the core of the

"intelligence" exhibited by the autonomous system. Its right half (Execu-

tor, Real Time Simulator and Monitor) operates in real time. Only when

there is an anomaly in the real time operation does the central part of the

loop (Diagnoser) become active. The Diagnoser signals the Planner to take

care of the situation. Human inter_entio_ will be necessary if the Planner

cannot handle the anomaly. The frequency with which operator help is

sought will determine how autonomous the system really is.

7

Operator C_De_trol _ Control Local Control

Figure 2. Meshed Control Loops

0 L

(a) Factory Robot (b) TeleoperaUon

(c) Intelligent Robot (d) Superv/sory Control
e

Figure 3. Alternative Control System Realizations

8

8 Knowledge Base

The Knowledge Base is the repository of all information in the system .

Some of the information is about the real time operation of the system

(and hence used in the Local Control Loop), some is used for planning and

evaluation (by the Executive Control Loop) and some is to aid the operator

in testing and simuIation activities (in the Operator Control Loop) All

access to the stored data is centralized using the Knowledge Base Manager.

It contains the following information:

• System Configuration

• Constraints

• Command Script (for Executor commands)

• Real World State Description (provided by State Space Estimator)

• A set of policies/algorithms for the Planner to choose from

• Objective Function (representing the long-term goal of the system)

• Statistical Information (for performance evaluation)

• Test/Diagnostic/Simulation Tools for the operator

• History of the system

• Explanation for anomalies (provided by Diagnoser when needed)

The Knowledge Base Manager is responsible for ensuring the consis-

tency and integrity of the information in the Knowledge Base. It also acts

as the interface between two or more independent autonomous systems.

9

ORIGINAL PAQE IS
OF POOR QUALITY

9 General R/Iana er

It has been considered the inclusion of a special module whose purpose is

to serve as an interface between the autonomous system and an "Executive

There should be a way to control and monitor the components of an

autonomous system. In other words , it is necessary to have a special

module, called "General Manager", exercising control over all parts of the

autonomous system.

There can be several modes of operation for a given autonomous sys-

tem. Each mode entails a different set of functiona for each component of

the system and, possibly, a different set of inter-connections between the

components. For example, when there is a malfunction in some part of the

system, it will enter a "diagnostic" mode of operation till such time as the

fault can be corrected and "normal" mode resumed.

The General Manager initiates and monitors the autonomous system.

It can reconfigure the system and dynamically alter the functions of and

the interactions between the parts of the system. It has complete access

to every component of the system for detecting and analyzing anomalous

behaviour. It can use message logs and statistical information in the Knowl-

edge Base to evaluate the performance of the system and detect bottlenecks.

10

SDAG TECHNICAL NOTES - 86-02 December 1986

INCO Shuttle Communication System 1

Piyush Dikshit
Katia Guimaraes

Maya Ramamurthy

Ashok Agrawala

Ronald L. Larsen

Systems Design and Analysis Group

Department of Computer Science

University of Maryland

College Park, MD 20742

1This research was supported in part by NASA under Grant NCC-2414

Contents

1 Introduction

2 Conceptual Framework

2.1 Major Functions

2.2 Control Loops

2.3 Knowledge Base

3 INCO Shuttle Communication Model

3.1 Environment Description

3.2 Knowledge Base

3.3 The Model

4 Concluding Remarks

1

I

1

5

6

7

7

7

8

10

1 Introduction

In a previous work we have defined a general architectural model for au-

tonomous systems, which can be mapped easily to describe the functions

of any automated system (SDAG-86-01). In this note, we use the model to

describe the Shuttle communication system.

First we briefly review the architecture, then we present the environ-

ment of our application, and finally we detail the specific function for each

functional block of the architecture for that environment.

2 Conceptual Framework

The conceptual framework consists of four major functions integrated into

a unifying system architecture: 1. the operator interface, 2. task planning

and reasoning, 3. sensing and perception, and 4. control execution. These

functions are then organized to provide three control loops: 1. an operator

control loop, 2. an executive control loop, and 3. a local control loop. The

overall concept is illustrated in figure 1.

2.1 Major Functions

The operator interface includes displays and controls. Displays provide all

of the information about system operation to the human operator, and can

employ a variety of mechanisms for communicating information. Visual

displays, such as graphics video display workstations, head-up displays,

hand controllers or exoskeletons, can also be used, as can aural feedback

and voice generation.

Controls provide the means by which the operator communicates in-

formation to the system, such as the nature or details of the task to be

performed. Alphanumeric keyboards commonly provide this capability, of-

ten augmented with function keys, l|ght p'ens, and similar mechanisms.

i
I

I

! _ [Displays
I I
I

l
I

I
I

I
I

I
I

"i Controls

' I

' ti

Lm __ __

i
J

S.S.Est.

I
i

!

Perceptor-_----]

Effector __,

11

System Architecture & Integration)

Task Planning & Reasonin Control Execution)

Figure 1. Automated System Control Architecture

The integration of displays with controls provides the environment for

human interaction with the system. It provides the means by which the hu-

man operator can communicate the description of the task to be performed

to the system, and the means by which the system can communicate the

status of task execution back to the operator.

Task planning and reasoning includes most of the intelligence of the

automated system. It receives the description of the task to be performed

from the Controls, translates that into commands which can be remotely

executed to change the state of the world, observes the changing world state,

handles unexpected discrepancies in the world, seeking operator interven-

tion only when it cannot cope with a world situation with the _intelligence"

it has. Task planning and reasoning requires an extensive Knowledge Base

containing all of the data required to represent and reason about the task

domain. The major capabilities of task planning and reasoning are pro-

vided by seven functional modules: 1. Planner, 2. Simulator, 3. Executor,

4. Real Time Simulator, 5. State Space Estimator, 6. Monitor, and 7.

Diagnoser.

The Planner receives the task description from the Controls, and trans-

forms the (typically) high level description of the task into a nominal plan

of action. The plan is a time sequenced series of primitive actions which

are used by the Executor for real-time operation.

The Simulator is a tool for the operator to carry out preliminary in-

vestigations of the effect of certain commands before they can be used in

the real world. It gets simulation requests from the operator, a description

of the real world from the Knowledge Base (or from the operator himself

if the command is to be given to a simulated world state) and computes

the sequence of world state changes over time corresponding to the request.

The simulation results may be sent to Displays, along with the Knowledge

Base.

The Executor accepts the nominal pla_ of action from the Planner and

issues primitive commands in real-ti_e. It!also receives minor adjustments,

which are superimposed on the command sequence to fine tune the execu-

tion of the operation in response to unanticipated discrepancies between

the expected state of the world and the actual state.

The Real Time Simulator computes Expectations about the Real World

in real time based on the commands issued by the Executor, the current

world state in the Knowledge Base and a command script which describes

the effect of commands on the Real World. These Expectations are used

by the Monitor to detect discrepancies between what is observed and what

is expected in the Real World.

The State Space Estimator uses the observation data provided by the

Perceptor to derive a state description of the Real World, giving meaning

to the raw information gathered by the Perceptor. The interpreted world

state description is placed in the Knowledge Base also.

The Monitor uses expected values of state descriptors (computed by the

Real Time Simulator) and the observed data in real-time to detect discrep-

ancies between the expected world state and the actual world state. Non-

goal-threatening discrepancies are transformed into adjustments which are

fed back to the Executor. Goal-threatening discrepancies (such as failure

of a required device, or detection of a broken component) require further

analysis. An anomaly report is sent to the Diagnoser.

The Diagnoser receives anomaly reports from the monitor, and attempts

to assess the nature of the anomaly, its cause, and potential effects. It

computes an _inferred world state", i.e., the most plausible explanation

and implied new system state, and places this in the knowledge base as the

best estimate of the current world state. It then issues a replan request

to the Planner, which informs the Planner that the nominal plan is no

longer satisfactory. The Planner formulates a new nominal plan or alerts

the operator if it cannot do so.

The sensing and perception function provides a mapping from measur-

able internal and external parameters to an estimate of the world state.

Its input is typically acquired from a multi-mode array of tasks and world

sensing devices. The objective of the sensing and perception function is to

provide the Monitor with a real-time best estimate of the state of the task

domain in terms which are consistent with the expected values provided by
the Real Time Simulator.

The control execution function includes the manipulators and effectors,

and tools available at the task site which can be used to accomplish the

desired task, as well as the low level controls required to transform primitive

commands issued by the Executor into state-changing actions.

,

2.2 Control Loops

The automated system control architecture illustrated consists of three ma-

jor control loops. The Operator Control loop includes the human operator

plus the Controls, Planner, Simulator, and Displays. This loop provides the

interaction between the human operator and the system. It can operate in-

dependently, providing a pure system simulation capability. This capability

is desirable for operator training or system evaluation, for example.

The Executive Control loop includes all of the components required

to operate and control a subsystem with minimal assistance from a human

operator: the Planner, Executor, Real Time Simulator, Monitor, Diagnoser,

and Knowledge Base. This core loop provides a generic control architecture

which is equally applicable to controlling a deep space spacecraft or an

autonomous vehicle as it is to a robotic system.

The Local Control loop, consisting of the Executor, Real Time Simula-

tor, Effector, Perceptor, State Space Estimator and Monitor, provides the

low level control for the specific manipulators used in the robot, as well as

the sensorbased information extraction algorithms.

It is important to realize that these three control loops do not work

in the same time-frame. The Local Control Loop works in real time as

it needs to keep up with the changes in the real world. The Operator

Control Loop, on the other hand, is used only for high level planning and

simulation/testing activities. In a truly autonomous system, it may have

little to do with the normal run-time functioning of the rest of the sys-

tem. The Executive Control Loop falls somewhere in between. It is the

core of the "intelligence" exhibited by the autonomous system. Its right

half (Executor, Real Time Simulator and Monitor) operates in real time.

Only when there is an anomaly in the real time operation does the cen-

tral part of the loop (Diagnoser) become active. The Diagnoser evaluates

the anomalous condition and generates the necessary action requests for

the Planner. Human intervention will be necessary if the Planner cannot

handle the anomaly. The frequency with which operator help is sought

determines how autonomous the system really is, and other operating con-

ditions of the system.

2.3 Knowledge Base

The Knowledge Base is the repository of all information in the system.

Some of the information is about the real time operation of the system

(and hence used in the Local Control Loop), some is used for planning and

evaluation (by the Executive Control Loop) and some is to aid the opera-

tor in testing and simulation activities (in the Operator Control Loop). All

audit trail information is also saved in the Knowledge Base and is available

to different components of the system, including the operator, as neces-

sary. All access to the stored data is centralized using the Knowledge Base

Manager.

It contains the following information:

• System Configuration

• Constraints

• Command Script (for Executor commands)

• Real World State Description (provided by State Space Estimator)

• A set of policies/algorithms for the Planner to choose from

• Objective Function (representing the long-term goal of the system)

• Statistical Information (for performance evaluation)

• Test/Diagnostic/Simulation Tools for the operator

• History of the system

• Explanation for anomalies (provided by Diagnoser when needed)

The Knowledge Base Manager is responsible for ensuring the consis-

tency and integrity of the information in the Knowledge Base. It also acts

as the interface between two or more independent autonomous systems.

6

3 INCO Shuttle Communication Model

3.1 Environment Description

In this section, we adapt the proposed architecture to a simple communica-

tion system. It consists of an orbiter moving in a 90-rain orbit, two orbiter

antennas (one channel each), and four ground stations. The information

available to the system is:

1. Earth view periods - for each ground station, the periods in which it

can be viewed from the orbiter, and

2. Orbiter view plan - for each antenna, the periods when it is in view

of at least one ground station.

The main goal is to schedule communication links in space. The requests

for using these channels during given intervals of time have to be handled

by scheduling the available resources. This task can be done without direct

human intervention. The operator establishes priorities and policies, and

the system generates schedules accordingly, and see that they are properly
carried out.

3.2 Knowledge Base

For such a system, the Knowledge Base would contain the following infor-

mation:

• Earth view periods

• Orbiter view plan

• Constraints

• Pre and post conditions

• System configuration

• System dynamics

• Scheduling algorithms

• World state description

• Time history

• Objective functions

3.3 The Model

Priorities and policies to be used for scheduling are established initially, and

can be changed as and when necessary by the operator. These specifications

are used to select an appropriate scheduling algorithm from those available

in the Knowledge Base.

The scheduling algorithm is used to update the schedule for the use of

communication links, based on some optimality criteria. The schedule thus

created is used to control the communication system. The autonomous

system tries to take care of anomalies in the expected system behaviour as
best it can.

The modules have the following functions:

• CONTROL: Generates formatted schedule or simulation request, or

generates formatted control directive.

PLANNER: Gives high level directives for the Executor to accom-

plish the goals (e.g., chooses algorithm that better fulfills established

policies). It also evaluates the effect of an anomaly, based on the

estimate of its cause (as computed by the Diagnoser, and kept in

the Knowledge Base), and tries to overcome the problem by replan-

ning (e.g., marks a device as "not available" in the Knowledge Base's

world state description, and see that all tasks involving that device

be rescheduledby the Executor). If it is not possible to replan, sends
an alert to the operator through Simulator.

Planner additionally passesschedulerequestson from Controls to Ex-
ecutor, and passessimulation requestson from Controls to Simulator.

SIMULATOR: Computesthe effectof a simulation requeston the real
or a given world, generating a seriesof nominal world state changes.
It can, for instance, simulate the effect of applying a certain policy
to rescheduleall the requests in the current schedule. Simulator ad-
ditionally passesalert signal on from Planner to Display.

DISPLAY: Formats displays for the operator (e.g., shows in a screen
a chart with a certain schedule).

EXECUTOR: Tries to attend to the communication requests,apply-
ing the algorithm defined by the Planner, in a way to optimize the
useof the resourcesavailable (according to somecriteria). It gener-
ates commandswhich are comprised of preconditions, channel to be
used, start time, and duration of transmission. Thesecommands are
sent to the Effector, and a copy of them is sent to the Real Time
Simulator.

EFFECTOR: Enforcespreconditions (e.g., adjusts the orientation of
an antenna from one position to another), initiates transmissions,
closestransmissions, etc.

PERCEPTOR: Constantly observesthe state of each device, and the
status of all ongoing transmissions,and sendsthis information to the
State SpaceEstimator.

STATE SPACE ESTIMATOR: Elaborates on the information gath-
ered by the Perceptor to synthesizea picture of the real world. Basi-
cally, it identifies:

1. transmissionsstarted or finished,

2. transmissions interrupted due to problems,

3. devicesunder normal operation conditions or down,

4. current earth view and orbiter view, and so on.

REAL TIME SIMULATOR: Infers what to expect asresult of apply-
ing commands to the real world. It can conclude, for instance, that
in one minute an antennamust be in a certain position and executing
a communication, whereasanother device must be in the READY
mode.

MONITOR: Compares the states of transmissions and devices fur-
nished by the State SpaceEstimator to those provided by the Real
Time Simulator. Comparesearth view and orbiter view to the the
expected. Minor problems in a transmission will generate a request
to the Executor from Monitor to reschedule it. Transmissions that
haverepeatedly failed, deviceswhich do not respondsatisfactorily to
primitives issued by the Effector, or changes in the Earth/Orbiter
view will produce alert signals to the Diagnoser.

DIAGNOSER: Tries to identify the causeof unusual occurrences in
the system. For instance, repeatedly failing transmission can be due
to demagedparts in an involved device.

4 Concluding Remarks

We have presented an application of a previously proposed architecture

for autonomous systems. The example that we chose to illustrate was a

simplified version of the Shuttle communication system.

We found that the application of the model to a real world situation

was very helpful in clarifying the specific functions of each module, as well

as the interfaces among them. It has also been shown that the proposed

architecture is robust and can be easily adapted to any given problem that

involves the use of an autonomous system.

10

SDAG TECHNICAL NOTES - 87-01 January 1987

Dynamic Bin Packing Problem 1

Piyush Dikshit

Katia Guimaraes

Maya Ramamurthy

Ashok Agrawala

Ronald L. Larsen

Systems Design and Analysis Group

Department of Computer Science

University of Maryland

College Park, MD 20742

1This research was supported in part by NASA under Grant NCC-2414"

Contents

1 Introduction

2 Conceptual Framework

2.1 Major Functions

2.2 Control Loops

2.3 Knowledge Base

3 Bin Packing Problem

3.1 Environment Description

3.2 Blocks & Bins

3.3 Knowledge Base

3.4 The Model

4 Concluding Remarks

1

1

1

5

6

7

7

7

7

8

11

1 Introduction

In a previous work we have defined a general architectural model for au-

tonomous systems, which can be mapped easily to describe the functions

of any automated system(SDAG-86-01). In this note, we use the model to

describe the problem of thermal management in space stations.

First we briefly review the architecture, then we present the environ-

ment of our application, and finally we detail the specific function for each

functional block of the architecture for that environment.

2 Conceptual Framework

The conceptual framework consists of four major functions integrated into

a unifying system architecture: 1. the operator interface, 2. task planning

and reasoning, 3. sensing and perception, and 4. control execution. These

functions are then organized to provide three control loops: 1. an operator

control loop, 2. an executive control loop, and 3. a local control loop. The

overall concept is illustrated in figure 1.

2.1 Major Functions

The operator interface includes displays and controls. Displays provide all

of the information about system operation to the human operator, and can

employ a variety of mechanisms for communicating information. Visual

displays, such as graphics video display workstations, head-up displays,

hand controllers or exoskeletons, can also be used, as can aural feedback

and voice generation.

Controls provide the means by which the operator communicates in-

formation to the system, such as the nature or details of the task to be

performed. Alphanumeric keyboards commonly provide this capability, of-

ten augmented with function keys, light pens, and similar mechanisms.

t

(Operator Interface Sensing & Perception

I
t

I

1
I

I

I

I
t__

I

: Controls

t

Simulator
Monitor "-

, I
I _ Planner

1
3

I

I Knowledge Basel

I I
t --J

11
Diagnoser_---

7

I

R.T.Sim. j

S.S.Est. i
!1
J_

[,
Perceptor _----

!i
J

I

I
k

Effector _

II

,r

Executor]

L -J

'System Architecture & Integration)

Task Planning & Reasoning)
Control Execution

Figure 1. Automated System Control Architecture

2

The integration of displays with controls provides the environment for

human interaction with the system. It provides the means by which the hu-

man operator can communicate the description of the task to be performed

to the system, and the means by which the system can communicate the

status of task execution back to the operator.

Task planning and reasoning includes most of the intelligence of the

automated system. It receives the description of the task to be performed

from the Controls, translates that into commands which can be remotely

executed to change the state of the world, observes the changing world state,

handles unexpected discrepancies in the world, seeking operator interven-

tion only when it cannot cope with a world situation with the _intelligence _

it has. Task planning and reasoning requires an extensive Knowledge Base

containing all of the data required to represent and reason about the task

domain. The major capabilities of task planning and reasoning are pro-

vided by seven functional modules: 1. Planner, 2. Simulator, 3. Executor,

4. Real Time Simulator, 5. the State Space Estimator, 6. the Monitor,

and 7. the Diagnoser.

The Planner receives the task description from the Controls, and trans-

forms the (typically) high level description of the task into a nominal plan

of action. The plan is a time sequenced series of primitive actions which

are used by the Executor for real-time operation.

The Simulator is a tool for the operator to carry out preliminary in-

vestigations of the effect of certain commands before they can be used in

the real world. It gets simulation requests from the operator, a description

of the real world from the Knowledge Base (or from the operator himself

if the command is to be given to a simulated world state) and computes

the sequence of world state changes over time corresponding to the request.

The simulation results may be sent to Displays, along with the Knowledge

Base.

The Executor accepts the nominal plan of action from the Planner and

issues primitive commands in real-time. It also receives minor adjustments,

which are superimposed on the command sequence to fine tune the execu-

tion of the operation in response to unanticipated discrepancies between

the expected state of the world and the actual state.

The Real Time Simulator computes Expectations about the Real World

in real time basedon the commands issued by the Executor, the current

world state in the Knowledge Base and a command script which describes

the effect of commands on the Real World. These Expectations are used

by the Monitor to detect discrepancies between what is observed and what

is expected in the Real World.

The State Space Estimator uses the observation data provided by the

Perceptor to derive a state description of the Real World, giving meaning

to the raw information gathered by the Perceptor. The interpreted world

state description is placed in the Knowledge Base also.

The Monitor uses expected values of state descriptors (computed by the

Real Time Simulator) and the observed data in real-time to detect discrep-

ancies between the expected world state and the actual world state. Non-

goal-threatening discrepancies are transformed into adjustments which are

fed back to the Executor. Goal-threatening discrepancies (such as failure

of a required device, or detection of a broken component) require further

analysis. An anomaly report is sent to the Diagnoser.

The Diagnoser receives anomaly reports from the monitor, and attempts

to assess the nature of the anomaly, its cause, and potential effects. It

computes an "inferred world state", i.e., the most plausible explanation

and implied new system state, and places this in the knowledge base as the

best estimate of the current world state. It then issues a replan request

to the Planner, which informs the Planner that the nominal plan is no

longer satisfactory. The Planner formulates a new nominal plan or alerts

the operator if it cannot do so.

The sensing and perception function provides a mapping from measur-

able internal and external parameters to an estimate of the world state.

Its input is typically acquired from a multi-mode array of tasks and world

sensing devices. The objective of the sensing and perception function is to

provide the Monitor with a real-time best estimate of the state of the task

domain in terms which are consistent with the expected values provided by
the Real Time Simulator.

The control execution function includes the manipulators and effectors,

and tools available at the task site which can be used to accomplish the

desired task, as well as the low level controls required to transform primitive

commands issued by the Executor into state-changing actions.

4

2.2 Control Loops

The automated system control architecture illustrated consists of three ma-

jor control loops. The Operator Control loop includes the human operator

plus the Controls, Planner, Simulator, and Displays. This loop provides the

interaction between the human operator and the system. It can operate in-

dependently, providing a pure system simulation capability. This capability

is desirable for operator training or system evaluation, for example.

The Executive Control loop includes all of the components required

to operate and control a subsystem with minimal assistance from a human

operator: the Planner, Executor, Real Time Simulator, Monitor, Diagnoser,

and Knowledge Base. This core loop provides a generic control architecture

which is equally applicable to controlling a deep space spacecraft or an

autonomous vehicle as it is to a robotic system.

The Local Control loop, consisting of the Executor, Real Time Simula-

tor, Effector, Perceptor, State Space Estimator and Monitor, provides the

low level control for the specific manipulators used in the robot, as well as

the sensorbased information extraction algorithms.

It is important to realize that these three control loops do not work

in the same time-frame. The Local Control Loop works in real time as

it needs to keep up with the changes in the real world. The Operator

Control Loop, on the other hand, is used only for high level planning and

simulation/testing activities. In a truly autonomous system, it may have

little to do with the normal run-time functioning of the rest of the sys-

tem. The Executive Control Loop falls somewhere in between. It is the

core of the "intelligence" exhibited by the autonomous system. Its right

half (Executor, Real Time Simulator and Monitor) operates in real time.

Only when there is an anomaly in the real time operation does the cen-

tral part of the loop (Diagnoser} become active. The Diagnoser evaluates

the anomalous condition and generates the necessary action :requests for

the Planner. Human intervention will be necessary if the Planner cannot

handle the anomaly. The frequency with which operator help is sought

determines how autonomous the system really is, and other operating con-

ditions of the system.

5

2.3 Knowledge Base

The Knowledge Base is the repository of all information in the system.

Some of the information is about the real time operation of the system

(and hence used in the Local Control Loop), some is used for planning and

evaluation (by the Executive Control Loop) and some is to aid the opera-

tor in testing and simulation activities (in the Operator Control Loop). All

audit trail information is also saved in the Knowledge Base and is available

to different components of the system, including the operator, as neces-

sary. All access to the stored data is centralized using the Knowledge Base

Manager.

It contains the following information:

• System Configuration

• Constraints

• Command Script (for Executor commands)

• Real World State Description (provided by State Space Estimator)

• A set of policies/algorithms for the Planner to choose from

• Objective Function (representing the long-term goal of the system)

• Statistical Information (for performance evaluation)

• Test/Diagnostic/Simulation Tools for the operator

• History of the system

• Explanation for anomalies (provided by Diagnoser when needed)

The Knowledge Base Manager is responsible for ensuring the consis-

tency and integrity of the information in the Knowledge Base. It also acts

as the interface between two or more independent autonomous systems.

6

3 Bin Packing Problem

In this section we apply the model for the autonomous system described

above to an illustrative example.

3.1 Environment Description

The motivation for this example comes from the problem of thermal man-

agement in space stations. On the space station there are many sources of

heat which may be dissipated using several facilities available. The heat

dissipation capability of each facility is limited, and may depend on param-

eters such as the orientation of the space station. In thermal management,

one has to assign heat sources to the dissipation facilities. In this example,

we abstract the major characteristics of the thermal management problem

in the form of dynamic blocks and multidimensional bins.

3.2 Blocks & Bins

In this example, the blocks represent the heat generated, and the bins

provide the mechanism for dissipation of heat.

The blocks and the bins have well defined properties, like size, shape etc.

In the most general case, both blocks and bins can be n-dimensional. Each

block has a given growth characteristic and each bin has a given shrinking

capacity. The blocks are generated in a deterministic or stochastic manner.

The problem is to pack these blocks into the bins as they are generated in

real time.

It is desirable to carry out this bin-packing in an "efficient" manner.

The criteria for efficiency is for the users of the system to define. For

example, it may be desired that the ratio of the number of blocks packed

to the number of blocks arriving per unit time is as high as possible.

3.3 Knowledge Base

The Knowledge Base contains the following :

• A timestamped description of the state of the blocks and the bins

with their respective sizes.

7

• Copy of commands issued by Executor.

• A set of bin-packing algorithms for the Planner to choose from.

• Aids to help Diagnoser analyse anomalies.

• Analysis of anomalies created by the Diagnoser.

• Heuristic information for the Planner to aid in selecting the appro-

priate strategy for bin packing.

• Statistics to evaluate the performance of the algorithm in use.

• Historical trace of state of bins and blocks.

• Simulation tools for the operator.

3.4 The Model

The role of the system components is described in what follows. The blocks

are generated by a Block Generator (which is needed only to simulate a

source for the blocks and is not part of the autonomous system). They

"arrive" in the Real World which consists of a number of bins placed on

a table. The blocks are put on the table by the Block Generator where

they keep growing until they are packed. On being packed, they begin to

shrink at a rate depending on the bin they are placed into, until they finally

disappear.

The Perceptor keeps giving a picture of the Real World to the State

Space Estimator periodically. This picture may be a lower dimensional

projection of the real world, and may be subject to noise corruption. The

State Space Estimator interprets the picture to update the current world

state in the Knowledge Base. The Monitor looks at the current world state

and on detecting the presence of fresh blocks, it informs the Executor. The

Executor uses the nominal plan specified by the Planner to determine which

blocks to pack first, and where to put them (i.e. the bin chosen to pack the

blocks and the position of the blocks within the bins).

The roles of different parts of the system are:

D

• CONTROL: Provides the interface for the operator to communicate

with the system. It is used to

- specify the criteria to be used in choosing an appropriate bin

packing algorithm.

- inquire about the current state of the blocks and bins.

- input commands to try out new strategies for bin-packing.

- handle unexpected anomalies in the system which cannot be

handled by the Planner.

• PLANNER: Specifies the information that the Executor needs to

know to pack the blocks in the bins. It generates a nominal plan

which is used by the Executor to decide:

1. which block to pack next

2. how to choose the bin for a given block

3. the bin-packing algorithm (with parameters, if necessary)

On a signal from the Diagnoser to Replan, it may change the packing

strategy currently in use. To decide on how to alter the strategy it

uses the description of the anomaly and heuristic information on how

to handle it from the Knowledge Base. If it is unable to handle the

anomaly, it informs the operator.

• SIMULATOR: Used by the operator to test new bin-packing strate-

gies.

• DISPLAYS: Formats displays for the operator. There could be tab-

ular descriptions of the blocks and bins or figures showing the bins

with blocks placed inside.

• EXECUTOR: It chooses one or more blocks for being.packed next

based on the policy specified by the Planner. It executes the bin-

packing algorithm and issues commands to the Effector to place the

block in a bin (for fresh blocks} or repack a block(if the Monitor

decided that the block was not properly packed). It informs the Real

Time Simulator about the command it has issued.

g

• EFFECTOR: Issues the primitives received from the Executor to the

real world. Thus it physically removes the blocks from the table and

puts them in the bin (or moves blocks from one part of the bin to

another, if they are being repacked).

• PERCEPTOR: Passes information about the physical attributes of

the blocks and bins to the State Space Estimator. It has no interpre-

tational ability.

• STATE SPACE ESTIMATOR: Interprets the data from the Percep-

tor data to come up with a meaningful description of the state of real

world. It updates the state of the blocks and the bins in the Knowl-

edge Base. If there are new blocks it informs the Executor. If a block

disappears from a bin, or the size of one or more blocks changes , it

informs the Monitor.

• REAL TIME SIMULATOR: Uses the last state description of the

blocks and bins and the commands issued by the Executor to com-

pute the new dimensions of all the blocks. It also determines which

blocks will disappear due to shrinkage. It passes these (timestamped)

Expectations to the Monitor.

• MONITOR: Determines whether blocks that disappear are expected

to disappear. It uses the Expectations computed by the Real Time

Simulator to detect discrepancies in real time . If the disappearance

of a block happens too early or too late, it requests the Executor

to repack the block. If the difference between the real and expected

size(s) of one or more blocks is greater than some specified tolerance

value, it alerts the Diagnoser.

• DIAGNOSER: On getting reports of serious anomalies from the Mon-

itor, it tries to determine the cause of the anomaly and places its

analysis in the Knowledge Base. For instance, if the Monitor reports

that some block has not disappeared at the time it was supposed to,

the Diagnoser will attempt to explain it by analysing the effect of

other factors in the Real World which could prevent the'disappearnce

10

of the block. (There areaids in the KnowledgeBaseto enable the Di-
agnoserto know what to check in casea given anomaly is reported).
It then signals the Planner to Replan.

4 Concluding Remarks

We have presented an application of a previously proposed architecture

for autonomous systems. The example that we chose to illustrate was an

abstraction of the problem of thermal management in space stations.

We purpose to design a testbed based on this example to develop an

experimental autonomous system. We hope that it will help in clarifying the

numerous interfaces among the modules that constitute the system. The

testbed may enhance our understanding of the functions of these modules.

It might also enable us to get a clearer picture of what constitutes the

Knowledge Base.

11

D

SDAG TECHNICAL NOTES - 87-02 February 1987

Testbed for an Autonomous System I

Piyush Dikshit

Katia Guimaraes

Maya Ramamurthy

Ashok Agrawala

Ronald L. Larsen

Systems Design and Analysis Group

Department of Computer Science

University of Maryland

College Park, MD 20742

1This research was supported in part by NASA under Grant NCC-2414

Contents

1 Introduction 1

Overview of Architectural Model 1

2.1 Functional Description 1

2.2 Knowledge Base 4

Bin

3.1

3.2

3.3

Packing Problem 5

Blocks & Bins 5

Knowledge Base 5

The Model 6

4 Testbed 9

4.1 Assumptions 9

4.2 Implementation 9

A Some Implementation Details 13

A.1 Real World 13

A.2 Generator 14

A.3 Perceptor 14

A.4 Monitor 14

A.5 Executor 15

A.6 Effector 16

A.7 Diagnoser 16

1 Introduction

In previous works we have defined a general architectural model for au-

tonomous systems, which can be mapped easily to describe the functions

of any automated system (SDAG-86-01), and we illustrated that model by

applying it to the thermal management system of a space station (SDAG-

87-01}. In this note, we will further develop that application and design

the details of the implementation of such a model.

First we present the environment of our application, by describing the

thermal management problem and an abstraction of the problem, as used in

SDAG-87-01. Then we detail the implementation of such abstraction, which

was called TESTBED. That includes specific function for each module in

the architecture, and the nature of the interfaces between each pair of

blocks.

2 Overview of Architectural Model

2.1 Functional Description

The overall architectural model is illustrated in figure 1.

The Planner receives the task description from the Controls, and trans-

forms the high level description of the task into a nominal plan of action.

The Simulator is a tool for the operator to carry out preliminary in-

vestigations of the effect of certain commands before they can be used in

the real world. It gets simulation requests along with a description of the

real world from the Knowledge Base (or from the operator if the command

is to be given to a simulated world state} and computes the sequence of

world state changes over time corresponding to the request. The simulation

results may be sent to Displays, along with the Knowledge Base.

The Executor accepts the nominal plan of action from the Planner and

issues commands in real-time. It also receives minor adjustments, which are

superimposed on the command sequence to fine tune the execution of the

operation in response to unanticipated discrepancies between the .expected

state of the world and the actual state.

Operator Interface Sensing & Perception

[--

P

I

I

'lI

I

i
I

I

I
U_

U_

Displays

I

Controls I
I

I

I

I

14

Monitor

t ,I

I

I Knowledge Base

I

I

qr

Planner

1

!Execut°rl
l_

11
Diagnoser[.--

[

IR.T.Sim. L
I

I
il

Perceptor------

Effector I

System Architecture & Integration)

._.J

Task Planning & Reasoningj
Control Execution)

Figure 1. Automated System Control Architecture

2
D

The Real Time Simulator computes expectations about the Real World

in real time based on the commands issued by the Executor, the current

world state in the Knowledge Base and a command script which describes

the effect of commands on the Real World. These expectations are used by

the Monitor to detect discrepancies between what is observed and what is

expected in the Real World.

The State Space Estimator uses the observation data provided by the

Perceptor to derive a state description of the Real World, giving meaning

to the raw information gathered by the Perceptor. The interpreted world

state description is placed in the Knowledge Base also.

The Monitor uses expected values of state descriptors (computed by the

Real Time Simulator) and the observed data in real-time to detect discrep-

ancies between the expected world state and the actual world state. Non-

goal-threatening discrepancies are transformed into adjustments which are

fed back to the Executor. Goal-threatening discrepancies (such as failure

of a required device, or detection of a broken component) require further

analysis. An anomaly report is sent to the Diagnoser.

The Diagnoser receives anomaly reports from the monitor, and attempts

to assess the nature of the anomaly, its cause, and potential effects. It

computes an _inferred world state", i.e., the most plausible explanation

and implied new system state, and places this in the knowledge base as the

best estimate of the current world state. It then issues a replan request

to the Planner, which informs the Planner that the nominal plan is no

longer satisfactory. The Planner formulates a new nominal plan or alerts

the operator if it cannot do so.

The sensing and perception function provides a mapping from measur-

able internal and external parameters to an estimate of the world state.

Its input is typically acquired from a multi-mode array of tasks and world

sensing devices. The objective of the se_sing and perception function is to

provide the Monitor with a real-time best estimate of the state of the task

domain in terms which are consistent with the expected values provided by

the Real Time Simulator.

The control execution function includes the manipulators and effectors,

and tools available at the task site which can be used to accomplish the

desired task, as well as the low level controls required to transform primitive

3

commands issued by the Executor into state-changing actions.

For more details on the architecture, refer to SDAG-01.

2.2 Knowledge Base

The Knowledge Base is the repository of all information in the system.

Some of the information is about the real time operation of the system

some is used for planning and evaluation and some is to aid the operator in

testing and simulation activities. All audit trail information is also saved

in the Knowledge Base and is available to different components of the sys-

tem, including the operator, as necessary. All access to the stored data

is centralized using the Knowledge Base Manager, which is responsible for

ensuring the consistency and integrity of the information in the Knowledge

Base.

It contains the following information:

• System Configuration

• Constraints

• Command Script (for Executor commands)

• Real World State Description (provided by State Space Estimator)

• A set of policies/algorithms for the Planner to choose from

• Objective Function (representing the long-term goal of the system)

• Statistical Information (for performance evaluation)

• Test/Diagnostic/Simulation Tools fc_r the operator

• History of the system

• Explanation for anomalies (provided by Diagnoser when needed)

,

3 Bin Packing Problem

The motivation for this example comes from the problem of thermal man-

agement in space stations. On the space station there are many sources

of heat which may be dissipated using several facilities available, each of

which has limited capability. In thermal management, one has to assign

heat sources to the dissipation facilities. In this example, we abstract the

major characteristics of the thermal management problem in the form of

dynamic blocks and multidimensional bins. The blocks represent the heat

generated, and the bins provide the mechanism for dissipation of heat.

3.1 Blocks &: Bins

The blocks and the bins have well defined properties. Blocks have two

dimensions, and a growth rate. Bins have a given shrinking capacity. The

blocks are generated in a deterministic or stochastic manner. The problem

is to pack these blocks into the bins as they are generated in real time.

We can picture the real world as consisting of blocks and bins placed

on a table. After being generated and put on the table, the blocks grow

at different rates. The blocks are packed into the bins by the autonomous

system. On being packed, the blocks start shrinking until they finally

disappear. The shrinking capacity of the bins keeps changing as blocks get

added or dissolved.

It is desirable to carry out this bin-packing in an "efficient" manner.

The criteria for efficiency is for the users of the system to define. For

example, it may be desired that the ratio of the number of blocks packed

to the number of blocks arriving per unit time is as high as possible.

3.2 Knowledge Base

The Knowledge Base contains the following :

• A timestamped description of the state of the blocks and the bins

with their respective sizes.

• Copy of commands issued by Executor.

5

• A set of bin-packing algorithms for the Planner to choose from.

• Aids to help Diagnoser analyse anomalies.

• Analysis of anomalies created by the Diagnoser.

• Heuristic information for the Planner to aid in selecting the appro-

priate strategy for bin packing.

• Statistics to evaluate the performance of the algorithm in use.

• Historical trace of state of bins and blocks.

• Simulation tools for the operator.

3.3 The Model

The role of the system components is described in what follows. The blocks

are generated by a Block Generator (which is needed only to simulate a

source for the blocks and is not part of the autonomous system). The

Block Generator puts the blocks on the table where they keep growing

until they are packed. On being packed, they begin to shrink at a rate

depending on the bin they are placed into, until they finally disappear.

The Perceptor keeps giving a picture of the Real World to the State

Space Estimator periodically. This picture may be a lower dimensional

projection of the real world, and may be subject to noise corruption. The

State Space Estimator interprets the picture to update the current world

state in the Knowledge Base. The Monitor looks at the current world state

and on detecting the presence of fresh blocks, it informs the Executor. The

Executor uses the nominal plan specified by the Planner to determine which

blocks to pack first, and where to pu:t the_ (i.e. the bin chosen to pack the

blocks and the position of the blocks with'_n the bins).

The roles of different parts of the system are:

• CONTROL: Provides the interface for the operator to communicate

with the system. It is used to

- specify the criteria to be used in choosing an appropriate bin

packing algorithm.

•

- inquire about the current state of the blocks and bins.

- input commands to try out new strategies for bin-packing.

- handle unexpected anomalies in the system which cannot be

handled by the Planner.

• PLANNER: Specifies the information that the Executor needs to

know to pack the blocks in the bins. It generates a nominal plan

which is used by the Executor to decide:

1. which block to pack next

2. how to choose the bin for a given block

3. the bin-packing algorithm (with parameters, if necessary)

On a signal from the Diagnoser to Replan, it may change the packing

strategy currently in use. To decide on how to alter the strategy it

uses the description of the anomaly and heuristic information on how

to handle it from the Knowledge Base. If it is unable to handle the

anomaly, it informs the operator.

• SIMULATOR: Used by the operator to test new bin-packing strate-

gies.

• DISPLAYS: Formats displays for the operator. There could be tab-

ular descriptions of the blocks and bins or figures showing the bins

with blocks placed inside.

• EXECUTOR: It chooses one or more blocks for being packed next

based on the policy specified by the Planner. It executes the bin-

packing algorithm and issues commands to the Effector to place the

block in a bin (for fresh blocks) o_ repack a block(if the Monitor

decided that the block was not properly packed). It informs the Real
Time Simulator about the command it has issued.

• EFFECTOR: Issues the primitives received from the Executor to the

real world. Thus it physically removes the blocks from the table and

puts them in the bin (or moves blocks from one part of the bin to

another, if they are being repacked).

7

PERCEPTOR: Passesinformation about the physical attributes of
the blocks and bins to the State SpaceEstimator. It has no interpre-
tational ability.

• STATE SPACE ESTIMATOR: Interprets the data from the Percep-
tor to comeup with a meaningful description of the state of the real
world. It updates the state of the blocks and the bins in the Knowl-
edgeBase. If there arenew blocks it informs the Executor. If a block
disappearsfrom a bin, or the sizeof one or more blocks changes, it
informs the Monitor.

• REAL TIME SIMULATOR: Uses the last state description of the
blocks and bins and the commands issuedby the Executor to com-
pute the new dimensionsof all the blocks. It also determines which
blocks will disappeardue to shrinkage. It passesthese (timestamped)
Expectations to the Monitor.

• MONITOR: Usesthe Expectations computed by the Real Time Sim-
ulator to detect discrepanciesin real time. If there is a difference
between the real and the expected size of a block, or if the disap-
pearance of a block happens too early or too late, it either requests
the Executor to repack the block or alerts the Diagnoser about the
problematic block.

• DIAGNOSER: On getting reports of serious anomalies from the Mon-

itor, it tries to determine the cause of the anomaly and places its

analysis in the Knowledge Base. For instance, if the Monitor reports

that some block has not disappeared at the time it was supposed to,

the Diagnoser will attempt to explain it by analysing the effect of

other factors in the Real World which could prevent the disappearnce

of the block. (There are aids in the I_nowledge Base to enable the Di-

agnoser to know what to check in case a given anomaly is reported).

It then signals the Planner to Replan.

•

4 Testbed

4.1 Assumptions

Throughout this implementation, the following points will be followed as

guidelines:

o The interface between the real world and the Autonomous System is

through the observable information of the Perceptor. The Effector is

the only component of the autonomous system which can carry out

defined functions in the real world.

. The real world is simulated by the appropriate data structure and a

process which interfaces with the Perceptor and the Effector of the

autonomous system. It also interfaces with the Generator and the

Disturber, which are considered as exogenous entities.

3. All module interfaces are asynchronous.

o

o

Communication between modules is accomplished through message

passing, using a common IPC facility. Each message is timestamped,

and a copy of each one is kept in the Knowledge Base.

Unless it is clearly said otherwise, all times are logical, and provide a

partial order involving related events.

4.2 Implementation

What follows is a description of the system modules and interfaces. Detailed

specification of some of these modules can be found in appendix A.

• CONTROL

FUNCTIONS - The main function of the control is to provide the

interface necessary for the operator sitting in front of the terminal

display. It will provide the communications capability for the operator

to any of the modules of the system. The link with the Planner will

be used for specifying the policies. It will talk to the Diagnoser to

•

provide resolution to the contingencies which can not be handled by

the Planner.

It is able to carry out query functions on the Knowledge Base, and

also to request specific simulations.

The system should be operable in a teleoperation mode, in which all

decisions are taken by the operator. In this case, the Control will be

linked directly to the Effector and the Perceptor will be connected to

the Display.

INS - Operator command

OUTS - Inquiries or control commands.

• PLANNER

FUNCTIONS - Specifies the information that the Executor needs to

know for packing the blocks in the bins. It chooses the bin-packing

algorithm to be used and specifies:

- Policy regarding which block is to be packed next

- Policy regarding which bin has higher priority

- Any other parameters necessary for the chosen algorithm.

INS - Inquiries or control commands

OUTS - Strategy for bin packing

• EXECUTOR

FUNCTIONS - Responsible for carry_ing out the policy defined by the

Planner for the bin packing. It receives information from the Monitor

and generates the action-type commands for the Effector.

A copy of each command is sent to the Real Time Simulator, so that

it can compute the expectations.

INS - New block description;

Minor mismatch report

I0'

OUTS - Commandsto place (or remove)blocks in (or from) the bins.
(It also puts statistical data for performance evaluation in KB)

• REAL TIME SIMULATOR (RTS)

FUNCTIONS - Responsible for computing expectations for Monitor.

INS - Request for expectations at a given time T.

OUTS - Expectations at time T.

• EFFECTOR

FUNCTIONS - Carry out the commands issued by the Executor.

This is the only entity in the autonomous system which can change

the real world.

INS - Block placement and removal commands

OUTS - Changes to real world

• PERCEPTOR

FUNCTIONS - Gets information about the real world and gives it to

the State Space Estimator. It 'has very little processing or interpre-

tational capabilities, acting as a passive observer. It operates both

continuously and under the control of the Monitor which may ask it

to acquire a specific piece of information.

INS - Requests for description of real world

Picture of real world

OUTS - Real world description _

• STATE SPACE ESTIMATOR

FUNCTIONS - Transforms a real world description into more mean-

ingful specification of the real world state, using information in the

knowledge base. e.g. interprets a two dimensional world view into a

three dimentional state description.

INS - Real world description

11'

OUTS - Interpreted real world state description

• MONITOR

FUNCTIONS - It provides the Executor with the block descriptions.

It compares information regarding the expected versus the real world

description. On finding discrepancies it checks the severity. "Mi-

nor" problems are reported to the Executor. "Major" problems are

reported to the Diagnoser. It also interfaces with the Real Time

Simulator to get the expected values for the world state.

INS - Real world state description

Expected world state description

OUTS - Reports of mismatches between the real and expected world

states.

• DIAGNOSER

FUNCTIONS - It is responsible for analysing anamolies and gener-

ating actions for the Planner, Executor or the Display.

INS - Description of anomaly

OUTS - Generates actions to take care of anomaly

SIMULATOR

FUNCTIONS - At the request of the operator it is responsible for

carrying out the simulation of the real world. The basic inputs for

the simulations may be obtained from the KB or as Whatif's from

the operator. The outputs and results of the simulation are displayed

as well as stored in the KB. Tl_ey m_y also be sent to the Monitor at
the request of the operator.

INS - Operator requests

OUTS - Results of simulations

12.

A Some Implementation Details

A.1 Real World

It is represented by a monitor comprised of the following:

DATA STRUCTURES:

• LastUpdateTime

• Blocks not yet packed, represented by a list whose nodes contain:

BlockNo, InitHeight, InitWidth, TimeGen, GrowRate

• State of the two bins, for each bin - a record with:

BinHeight, BinWidth, BinDissolvRate, list of blocks currently in the

bin. Each node of the list of blocks contains: BlockNo, Height, Width,

Coordl, Coord2, TimeBin

PROCEDURES:

• add-table-list (block-description)

• add-bin-list (BlockNo, Height, Width, Coordl, Coord2,

BinNo)

• del-table-list (BlockNo)

• del-bin-list (BlockNo, BinNo)

• copy-RW-list 0

• change-table-list (block-description)!

• change-bin-list (block-description, BinNo)

• update-RW-blocks 0

TimeBin,

13

A.2 Generator

This block is not properly part of the Autonomous System.It is in charge of

generating new blocks and introducing them to the Real World. It works

at a certain rate, which can be changed through the keyboard.From time

to time (After a given number of clock interruptions), the Generator will

create random values (inside a given range) for: InitHeight, InitWidth,

GrowRate. The current logical time is assigned to TimeGen. These val-

ues are associated to the next available BlockNo. The tuple formed by

(BlockNo, InitHeight, InitWidth, TimeGen, GrowRate) is then used as a

parameter for the add-table-list procedure.

A.3 Perceptor

Works both, continuously (at a given rate), or on demand from the opera-
tor.

On activation :

1. Issues copy-RW-list

2. Delays until receiving the answer to the request

3. Forwards the copy to the Screen

PROCEDURE :

Reports the description of part or the whole real world, along with the
time of observation.

A.4 Monitor
.-

Works continuously to provide control over the real world state. For that,

Monitor uses a "retry-flag" for each block. When a block is generated, its

retry-flag is OFF. A first problem with a block will be treated by the Mon-

itor, and will cause its retry-flag to become ON. A second problem with

the same block can then be identified, and will be considered as a serious

• anomaly, thus causing a signal to be sent to the Diagnoser.

14'

ORIGINAL PAGE IS
OF POOR QUALITY

PROCEDURE :

Receives expected world state (at time T) from Real Time Simulator.

Receives the real world state (at time T) from State Space Estimator.

Compares the two states.

If there is a mismatch for block BlockNo,

- Then

- If the retry-flag for that block is off

Sends Redo(BlockNo, BinNo) to Executor

Else

Sends (BlockNo, BinNo) to Diagnoser

Else

Updates real world description in KB (removing blocks which

disappeared, for instance).

A.5 Executor

PROCEDURE 1 :

If Redo, then:

1. removes BlockNo from nominal real world (KB);

2. issues a Remove(BlockNo, BinNo) command to Effector;

3. retrieves original request for BlockNo from KB;

4. marks this block as retried;

5. places a copy of original request in list of blocks waiting to be packed

by Executor (exec-list).

If New, then: Add incoming blocks to exec-list.

PROCEDURE 2 :

Whenever exec-list is not empty,

1. decides which block is going to be packed next, which bin it should

go in, and where in the bin it should be placed

2. deletes chosen block from exec-list, and

OR ,I'_NAL ,_AC'_E IS

OF POOR QUALITY

3. issues Place command to Effector.

A copy of Executor's Ins's and Out's must go to whoever will evaluate

the system performance.

A.6 Effector

On receiving a Place command :

1. Computes TimeBin = f(CurrTime)

2. Computes Height = f(InitHeight, GrowRate, CurrTime, TimeGen)

3. Computes Width = f(InitWidth, GrowRate, CurrTime, TimeGen)

4. Computes BinDissolvRate = f(BinCapacity, AreaPack)

5. Computes AreaPack = f(AreaPack, Height, Width)

6. Issues delete-table-list(BlockNo)

7. Issues add-bin-list(BlockNo, Height, Width, Coordl, Coord2, Time-

Bin, BinNo)

On receiving an EraseTable command :

• Issues delete-table-list(BlockNo)

On receiving an EraseBin command :

• Issues delete-bin-list(SlockNo_ ninN.o)

A.7 D]agnoser

PROCEDURE :

Can do one of the following :

• Send a signal to Planner, in order to change policy/algorithm.

18'

• Erase the block's description from the expected and real state and

signal the Executor to redo packing for the original block.

• Cause an alarm to be displayed to the operator reporting the mal-

function.

17.

